

Relativistic Temporal Logic Ways of Indeterminism

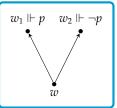
Attila Molnár Eötvös Loránd University

November 5, 2014

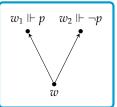
Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

Tree of Time

Consider the tree on the right. Let *p* represent the sentence "There is a sea battle". Suppose that *w* is today, and w_1 and w_2 are the two possible tomorrows. We have that $w \models \mathbf{F}p \land \mathbf{F} \neg p$, therefore,



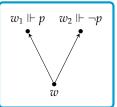
Consider the tree on the right. Let *p* represent the sentence "There is a sea battle". Suppose that *w* is today, and w_1 and w_2 are the two possible tomorrows. We have that $w \models \mathbf{F}p \land \mathbf{F} \neg p$, therefore,



• Since **F***p* means "It **will** be true (tomorrow) that *p*", in *w* it is true that

"It will be true (tomorrow) that there is sea battle and It will be true (tomorrow) that there is no see battle".

Consider the tree on the right. Let *p* represent the sentence "There is a sea battle". Suppose that *w* is today, and w_1 and w_2 are the two possible tomorrows. We have that $w \models \mathbf{F}p \land \mathbf{F} \neg p$, therefore,



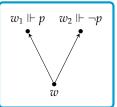
• Since **F***p* means "It **will** be true (tomorrow) that *p*", in *w* it is true that

"It will be true (tomorrow) that there is sea battle and It will be true (tomorrow) that there is no see battle".

• Since **F***p* means "**In the future (tomorrow), it would be possible** that *p*", in *w* it is true that

"In the future (tomorrow), it would be possible that there is a sea battle and In the future (tomorrow), it would be possible that there is no see battle".

Consider the tree on the right. Let *p* represent the sentence "There is a sea battle". Suppose that *w* is today, and w_1 and w_2 are the two possible tomorrows. We have that $w \models \mathbf{F}p \land \mathbf{F} \neg p$, therefore,



• Since **F***p* means "It **will** be true (tomorrow) that *p*", in *w* it is true that

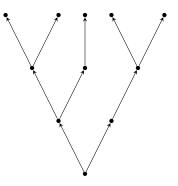
"It will be true (tomorrow) that there is sea battle and It will be true (tomorrow) that there is no see battle".

• Since **F***p* means "**In the future (tomorrow), it would be possible** that *p*", in *w* it is true that

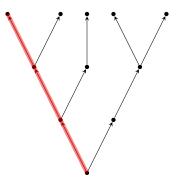
"In the future (tomorrow), it would be possible that there is a sea battle and In the future (tomorrow), it would be possible that there is no see battle".

So trees are appropriate drawings but somehow not "will" is the appropriate word for **F**. But then what is the meaning of "will" here?.

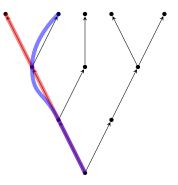
Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0●00	000	0000	00000000	000	0000



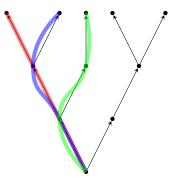
Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	00000000	000	0000



Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	00000000	000	0000



Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0●00	000	0000	00000000	000	0000



Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	00000000	000	0000

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
○●○○	000	0000	0000000	000	0000

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
00●0	000	0000	0000000	000	0000

Let $\mathfrak{F} = (W, <)$ be a tree.

DEFINITION: A history *h* is a maximally linear subset of *W*, i.e.,

- linear: $(\forall w, v \in h) \ w < v \lor w = v \lor w > v$.
- there is no proper linear extension of it:

 $(\forall h' \supseteq h) [h' \text{ is linear } \rightarrow h' \subseteq h.]$

 $h \stackrel{w}{\sim} h'$ will mean that histories h and h' share the same past until w. Since we are working with trees, this can be formalized simply by

$$h \stackrel{w}{\sim} h' \stackrel{\text{def}}{\Leftrightarrow} w \in h \cap h'$$

The set of all histories of a frame will be denoted by $H(\mathfrak{F})$:

 $\mathbf{H}(\mathfrak{F}) \stackrel{\text{def}}{=} \{h \subseteq W : h \text{ is maximally linear}\}\$

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
00●0	000	0000	0000000	000	0000

Let $\mathfrak{F} = (W, <)$ be a tree.

DEFINITION: A history *h* is a maximally linear subset of *W*, i.e.,

- linear: $(\forall w, v \in h) \ w < v \lor w = v \lor w > v$.
- there is no proper linear extension of it:

 $(\forall h' \supseteq h) [h' \text{ is linear } \rightarrow h' \subseteq h.]$

 $h \stackrel{w}{\sim} h'$ will mean that histories h and h' share the same past until w. Since we are working with trees, this can be formalized simply by

$$h \stackrel{w}{\sim} h' \stackrel{\text{def}}{\Leftrightarrow} w \in h \cap h'$$

The set of all histories of a frame will be denoted by $H(\mathfrak{F})$:

 $\mathbf{H}(\mathfrak{F}) \stackrel{\text{def}}{=} \{h \subseteq W : h \text{ is maximally linear}\}\$

show that $\stackrel{w}{\sim}$ is an equivalence relation.

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

INDETERMINIST INTERPRETATIONS OF THE TENSE "WILL".

Read $\mathbf{F}\varphi$ as "it will be the case that φ ". Is it plausible that

$$(\mathbf{F}\varphi \wedge \mathbf{F}\psi) \rightarrow \begin{bmatrix} \mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi) \vee \mathbf{F}(\mathbf{F}\varphi \wedge \psi) \end{bmatrix} \quad ?$$

If φ will be true and ψ will be true, then at least one of the followings is true:

- φ will be true, and after that ψ will true.
- ψ will be true, and after that φ will true.
- φ and ψ will be true at the same time.

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

INDETERMINIST INTERPRETATIONS OF THE TENSE "WILL".

Read $\mathbf{F}\varphi$ as "it will be the case that φ ". Is it plausible that

$$(\mathbf{F}\varphi \wedge \mathbf{F}\psi) \rightarrow \begin{bmatrix} \mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi) \vee \mathbf{F}(\mathbf{F}\varphi \wedge \psi) \end{bmatrix} \quad ?$$

If φ will be true and ψ will be true, then at least one of the followings is true:

- φ will be true, and after that ψ will true.
- ψ will be true, and after that φ will true.
- φ and ψ will be true at the same time.

Yes: Ockhamist future

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

INDETERMINIST INTERPRETATIONS OF THE TENSE "WILL".

Read $\mathbf{F}\varphi$ as "it will be the case that φ ". Is it plausible that

$$(\mathbf{F}\varphi \wedge \mathbf{F}\psi) \ \rightarrow \ \left[\mathbf{F}(\varphi \wedge \mathbf{F}\psi) \lor \mathbf{F}(\varphi \wedge \psi) \lor \mathbf{F}(\mathbf{F}\varphi \wedge \psi)\right] \quad ?$$

If φ will be true and ψ will be true, then at least one of the followings is true:

- φ will be true, and after that ψ will true.
- ψ will be true, and after that φ will true.
- φ and ψ will be true at the same time.

Yes: Ockhamist future

No: Peircean future

All the other options are variations of these two.

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

Ockhamist future

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	•00	0000	0000000	000	0000

OCKHAMIST FUTURE

"Ockhamism" [...] holds that it is meaningless to ask about the truth value of "a will happen" at *w* without further specifications: the problem is correctly expressed only if, in addition to *w*, one of its possible futures is specified. "Will happen" has to be understood as "will happen in the specified future of *w*".

ZANARDO 1996 (about PRIOR 1967)

So the history is always a tacit parameter

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	•00	0000	0000000	000	0000

OCKHAMIST FUTURE

"Ockhamism" [...] holds that it is meaningless to ask about the truth value of "a will happen" at w without further specifications: the problem is correctly expressed only if, in addition to w, one of its possible futures is specified. "Will happen" has to be understood as "will happen in the specified future of w".

ZANARDO 1996 (about PRIOR 1967)

So the history is always a tacit parameter

Indeterminism comes into the picture when we change the "specified possible future" (history) with an operator \Diamond .

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	•00	0000	0000000	000	0000

OCKHAMIST FUTURE

"Ockhamism" [...] holds that it is meaningless to ask about the truth value of "a will happen" at w without further specifications: the problem is correctly expressed only if, in addition to w, one of its possible futures is specified. "Will happen" has to be understood as "will happen in the specified future of w".

ZANARDO 1996 (about PRIOR 1967)

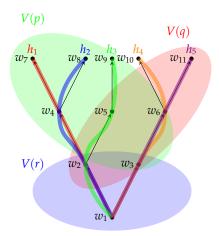
So the history is always a tacit parameter

Indeterminism comes into the picture when we change the "specified possible future" (history) with an operator \Diamond . Let $\mathfrak{M} = (W, <, V)$ be a tree model.

$$\begin{array}{cccc} \mathfrak{M},h,w \stackrel{\wp}{\models} p & \stackrel{\text{def}}{\Leftrightarrow} & w \in V(p) \\ \mathfrak{M},h,w \stackrel{\wp}{\models} \neg \varphi & \stackrel{\text{def}}{\Leftrightarrow} & \text{it is not true that } \mathfrak{M},h,w \stackrel{\wp}{\models} \varphi \\ \mathfrak{M},h,w \stackrel{\wp}{\models} \varphi \wedge \psi & \stackrel{\text{def}}{\Leftrightarrow} & \mathfrak{M},h,w \stackrel{\wp}{\models} \varphi \text{ and } \mathfrak{M},h,w \stackrel{\wp}{\models} \psi \\ \mathfrak{M},h,w \stackrel{\wp}{\models} \mathbf{P}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & \exists v(v < w \land \mathfrak{M},h,v \stackrel{\wp}{\models} \varphi) \\ \mathfrak{M},h,w \stackrel{\wp}{\models} \mathbf{F}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & (\exists v \in h) (w < v \land \mathfrak{M},h,v \stackrel{\wp}{\models} \varphi) \\ \mathfrak{M},h,w \stackrel{\wp}{\models} \Diamond \varphi & \stackrel{\text{def}}{\Leftrightarrow} & (\exists h' \stackrel{w}{\sim} h) \mathfrak{M},h',w \stackrel{\wp}{\models} \varphi \end{array}$$

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

TRAINING



Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

OCKHAMIST "WILL"

$$(\mathbf{F}\varphi \wedge \mathbf{F}\psi) \rightarrow \left[\mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi) \vee \mathbf{F}(\mathbf{F}\varphi \wedge \psi)\right] ?$$

is valid because outside of φ and ψ there are no \Diamond -s, so once the meaning of φ and ψ is given, the meaning of the formula above is evaluated on a given history, which is a linear order of moments.

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

Peircean future

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	•000	00000000	000	0000

PEIRCEAN FUTURE

From the Peircean point of view, [...] " φ will happen" is short for " φ will happen, no matter what possible future of *w* is considered", which is true just in case every possible future of *w* contains a moment at which φ is true.

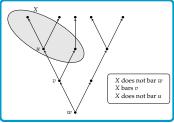
```
ZANARDO 1996 (about PRIOR 1967)
```

So even if we use the histories to give the semantics of \mathbf{F} , we do not relativize the truth of formulas to certain histories. Truth of a temporal statement is history-independent.

A set of worlds *X* **bars** *w* iff every history containing *w* goes through *X*:

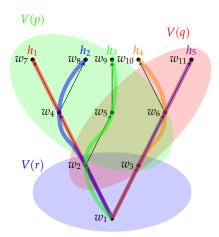
 $X \text{ bars } w \stackrel{\text{def}}{\Leftrightarrow} (\forall h \in \mathrm{H}(\mathfrak{F}))(w \in h \to h \cap X \neq \varnothing)$

Let $\mathfrak{M} = (W, <, V)$ be a tree model. $\mathfrak{M}, w \models p \qquad \stackrel{\text{def}}{\Leftrightarrow} \qquad w \in V(p)$ $\mathfrak{M}, w \models \neg \varphi \qquad \stackrel{\text{def}}{\Leftrightarrow} \qquad \text{it is not true that } \mathfrak{M}, w \models \varphi$ $\mathfrak{M}, w \models \varphi \land \psi \qquad \stackrel{\text{def}}{\Leftrightarrow} \qquad \mathfrak{M}, w \models \varphi \text{ and } \mathfrak{M}, w \models \psi$ $\mathfrak{M}, w \models \mathbf{P}\varphi \qquad \stackrel{\text{def}}{\Leftrightarrow} \qquad \exists v(v < w \land \mathfrak{M}, v \models \varphi)$ $\mathfrak{M}, w \models \mathbf{F}\varphi \qquad \stackrel{\text{def}}{\Leftrightarrow} \qquad \exists v(v < w \land \mathfrak{M}, v \models \varphi)$ $\mathfrak{M}, w \models \mathbf{F}\varphi \qquad \stackrel{\text{def}}{\Leftrightarrow} \qquad \llbracket \varphi \rrbracket_{\mathbf{P}}^{\mathfrak{M}} \text{ bars } w$ where $\llbracket \varphi \rrbracket_{\mathbf{P}}^{\mathfrak{M}} \stackrel{\text{def}}{=} \{w : \mathfrak{M}, w \models \varphi\}$, i.e, the set of those worlds in which φ is true.



Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

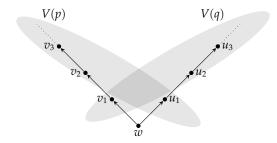
TRAINING



Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	00●0	00000000	000	0000

$$(\mathbf{F}\varphi \wedge \mathbf{F}\psi) \rightarrow \begin{bmatrix} \mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi) \vee \mathbf{F}(\mathbf{F}\varphi \wedge \psi) \end{bmatrix} ?$$

is invalid; let ${\mathfrak M}$ be the following "twin lines"-model:

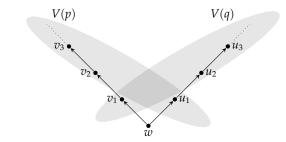


Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	00●0	00000000	000	0000

 $PEIRCEAN \ ``WILL''$

$$(\mathbf{F}\varphi \wedge \mathbf{F}\psi) \rightarrow \begin{bmatrix} \mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi) \vee \mathbf{F}(\mathbf{F}\varphi \wedge \psi) \end{bmatrix} ?$$

is invalid; let ${\mathfrak M}$ be the following "twin lines"-model:



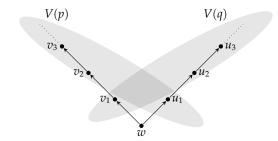
V(p) and V(q) bars w, so $\mathfrak{M}, w \models \mathbf{F}p \wedge \mathbf{F}q$

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	00●0	00000000	000	0000

 $PEIRCEAN \ ``WILL''$

$$(\mathbf{F}\varphi \wedge \mathbf{F}\psi) \rightarrow \begin{bmatrix} \mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi) \vee \mathbf{F}(\mathbf{F}\varphi \wedge \psi) \end{bmatrix} ?$$

is invalid; let \mathfrak{M} be the following "twin lines"-model:

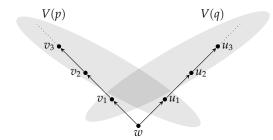


V(p) and V(q) bars w, so $\mathfrak{M}, w \models \mathbf{F}p \land \mathbf{F}q$ $V(p) \cap V(q) = \emptyset$, and \emptyset bars nothing, so $\mathfrak{M}, w \not\models \mathbf{F}(p \land q)$

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	00●0	00000000	000	0000

$$(\mathbf{F}\varphi \wedge \mathbf{F}\psi) \rightarrow \begin{bmatrix} \mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi) \vee \mathbf{F}(\mathbf{F}\varphi \wedge \psi) \end{bmatrix} ?$$

is invalid; let \mathfrak{M} be the following "twin lines"-model:

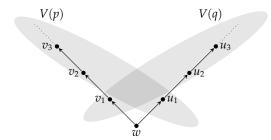


 $V(p) \text{ and } V(q) \text{ bars } w, \text{ so } \mathfrak{M}, w \models \mathbf{F}p \land \mathbf{F}q$ $V(p) \cap V(q) = \emptyset, \text{ and } \emptyset \text{ bars nothing, so } \mathfrak{M}, w \not\models \mathbf{F}(p \land q)$ $[\![\mathbf{F}p]\!]_{P}^{\mathfrak{M}} = \{w\} \cup \{v_{i} : i \in \mathbb{N}\} \quad [\![\mathbf{F}q]\!]_{P}^{\mathfrak{M}} = \{w\} \cup \{u_{i} : i \in \mathbb{N}\}$

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	00●0	00000000	000	0000

$$(\mathbf{F}\varphi \wedge \mathbf{F}\psi) \rightarrow \begin{bmatrix} \mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi) \vee \mathbf{F}(\mathbf{F}\varphi \wedge \psi) \end{bmatrix} ?$$

is invalid; let ${\mathfrak M}$ be the following "twin lines"-model:



$$V(p) \text{ and } V(q) \text{ bars } w, \text{ so } \mathfrak{M}, w \stackrel{\mathbb{P}}{\models} \mathbf{F}p \wedge \mathbf{F}q$$

$$V(p) \cap V(q) = \emptyset, \text{ and } \emptyset \text{ bars nothing, so } \mathfrak{M}, w \stackrel{\mathbb{P}}{\models} \mathbf{F}(p \wedge q)$$

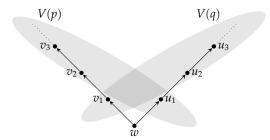
$$\llbracket \mathbf{F}p \rrbracket_{p}^{\mathfrak{M}} = \{w\} \cup \{v_{i} : i \in \mathbb{N}\} \quad \llbracket \mathbf{F}q \rrbracket_{p}^{\mathfrak{M}} = \{w\} \cup \{u_{i} : i \in \mathbb{N}\}$$

$$\llbracket \mathbf{F}p \rrbracket_{p}^{\mathfrak{M}} \cap V(q) = \{v_{1}\} \quad \llbracket \mathbf{F}q \rrbracket_{p}^{\mathfrak{M}} \cap V(p) = \{u_{1}\}$$

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	00000000	000	0000

$$(\mathbf{F}\varphi \wedge \mathbf{F}\psi) \rightarrow \begin{bmatrix} \mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi) \vee \mathbf{F}(\mathbf{F}\varphi \wedge \psi) \end{bmatrix} ?$$

is invalid; let \mathfrak{M} be the following "twin lines"-model:



 $V(p) \text{ and } V(q) \text{ bars } w, \text{ so } \mathfrak{M}, w \models^{\mathbb{P}} \mathbf{F}p \wedge \mathbf{F}q$ $V(p) \cap V(q) = \emptyset, \text{ and } \emptyset \text{ bars nothing, so } \mathfrak{M}, w \not\models^{\mathbb{P}} \mathbf{F}(p \wedge q)$ $\llbracket \mathbf{F}p \rrbracket_{p}^{\mathfrak{M}} = \{w\} \cup \{v_{i} : i \in \mathbb{N}\} \quad \llbracket \mathbf{F}q \rrbracket_{p}^{\mathfrak{M}} = \{w\} \cup \{u_{i} : i \in \mathbb{N}\}$ $\llbracket \mathbf{F}p \rrbracket_{p}^{\mathfrak{M}} \cap V(q) = \{v_{1}\} \quad \llbracket \mathbf{F}q \rrbracket_{p}^{\mathfrak{M}} \cap V(p) = \{u_{1}\}$ But neither of these bars w, so $\mathfrak{M}, w \not\models^{\mathbb{P}} \mathbf{F}(\mathbf{F}p \wedge q)$ and $\mathfrak{M}, w \not\models^{\mathbb{P}} \mathbf{F}(p \wedge \mathbf{F}q)$

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

"Always going to be \dots "

Let *p* represent the sentence "The 3rd World War is on." How should we formalize the statement "There won't be a 3rd World War."?

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

"Always going to be \dots "

Let *p* represent the sentence "The 3rd World War is on." How should we formalize the statement "There won't be a 3rd World War."?

• ¬**F**p

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

"Always going to be"

Let *p* represent the sentence "The 3rd World War is on." How should we formalize the statement "There won't be a 3rd World War."?

- ¬**F**p
- **F**¬*p*

Trees 0000	Ockhamist 000	Peircean 000●	Leibnizian 0000000	Thomason 000	Łukasiewitz? 0000

"Always going to be \dots "

Let *p* represent the sentence "The 3rd World War is on." How should we formalize the statement "There won't be a 3rd World War."?

- ¬**F**p
- **F**¬*p*
- \neg **F***p* says that V(p) does not bar 'us'. So there is an 'escape' history in which the 3rd World War won't break out

Trees 0000	Ockhamist 000	Peircean 000●	Leibnizian 0000000	Thomason 000	Łukasiewitz? 0000

"Always going to be \dots "

Let *p* represent the sentence "The 3rd World War is on." How should we formalize the statement "There won't be a 3rd World War."?

- ¬**F**p
- **F**¬*p*
- \neg **F***p* says that *V*(*p*) does not bar 'us'. So there is an 'escape' history in which the 3rd World War won't break out
- $\mathbf{F} \neg p$ says that W V(p) bar 'us'. So no matter what happens, there will be moments in the future when there is no 3rd World War.

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	000•	0000000	000	0000

"Always going to be"

Let *p* represent the sentence "The 3rd World War is on." How should we formalize the statement "There won't be a 3rd World War."?

- ¬**F**p
- **F**¬*p*
- \neg **F***p* says that *V*(*p*) does not bar 'us'. So there is an 'escape' history in which the 3rd World War won't break out
- $\mathbf{F} \neg p$ says that W V(p) bar 'us'. So no matter what happens, there will be moments in the future when there is no 3rd World War.

None of the above is correct, because the first is speaking about only some 'escape'-history, and the second talks about only some moments in the future in which there is no 3rd World war. The reason of course is that we interpret **F** with a $\forall \exists$ -way, and no matter how we negate it, the mixed nature of it will survive.

If we want to formalize the 'won't-s, and "always going to be"-s, we need the old history-independent strong future operator for that purpose:

$$\mathfrak{M}, w \models^{\mathbb{P}} \mathbf{G} \varphi \quad \stackrel{\mathrm{def}}{\Leftrightarrow} \quad \forall v \big(w < v \land \mathfrak{M}, v \models^{\mathbb{P}} \varphi \big)$$

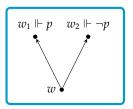
Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

Leibnizian

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	•0000000	000	0000

PARALLEL HISTORIES KAMP FRAMES INSTEAD OF TREES

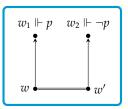
Consider the tree on the right. Let *p* represent the sentence "There is a sea battle". Suppose that w and w' are today, and w_1 and w_2 are the two possible tomorrows.



Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	●0000000	000	0000

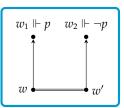
PARALLEL HISTORIES KAMP FRAMES INSTEAD OF TREES

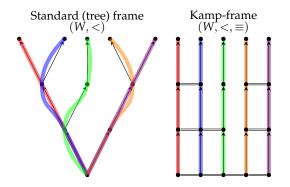
Consider the tree on the right. Let *p* represent the sentence "There is a sea battle". Suppose that w and w' are today, and w_1 and w_2 are the two possible tomorrows.

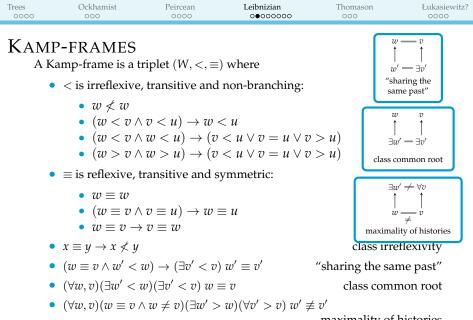


PARALLEL HISTORIES KAMP FRAMES INSTEAD OF TREES

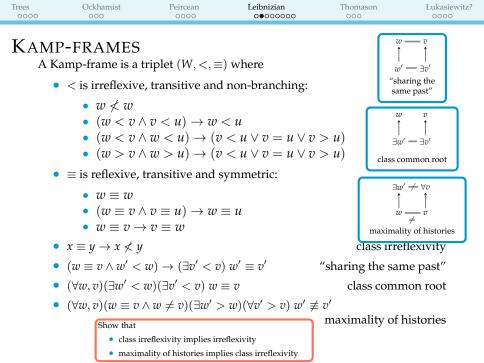
Consider the tree on the right. Let *p* represent the sentence "There is a sea battle". Suppose that w and w' are today, and w_1 and w_2 are the two possible tomorrows.







maximality of histories



Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	00●00000	000	0000

KAMP-MODELS

Let $\mathfrak{K} = (W, <, \equiv)$ be a Kamp-frame. A Kamp-valuation is a $V : At \to \wp W$ for which the following additional property holds:

$$w \in V(p) \Rightarrow (\forall v \equiv w) \ v \in V(p)$$
 for all $p \in At$

a Kamp-frame $\mathfrak{K} = (W, <, \equiv)$ together with such a valuation *V* is a Kamp-model $\mathfrak{M}_{K} = (\mathfrak{K}, V)$.

$$\begin{split} \mathfrak{M}_{K}, w & \stackrel{\mathbb{K}}{\models} p & \stackrel{\text{def}}{\Leftrightarrow} & w \in V(p) \\ \mathfrak{M}_{K}, w & \stackrel{\mathbb{K}}{\models} \neg \varphi & \stackrel{\text{def}}{\Leftrightarrow} & \text{it is not true that } \mathfrak{M}_{K}, w & \stackrel{\mathbb{K}}{\models} \varphi \\ \mathfrak{M}_{K}, w & \stackrel{\mathbb{K}}{\models} \varphi \wedge \psi & \stackrel{\text{def}}{\Leftrightarrow} & \mathfrak{M}_{K}, w & \stackrel{\mathbb{K}}{\models} \varphi \text{ and } \mathfrak{M}_{K}, w & \stackrel{\mathbb{K}}{\models} \psi \\ \mathfrak{M}_{K}, w & \stackrel{\mathbb{K}}{\models} \mathbf{P}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & (\exists v < w) \ \mathfrak{M}_{K}, v & \stackrel{\mathbb{K}}{\models} \varphi \\ \mathfrak{M}_{K}, w & \stackrel{\mathbb{K}}{\models} \mathbf{F}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & (\exists v > w) \ \mathfrak{M}_{K}, v & \stackrel{\mathbb{K}}{\models} \varphi \\ \mathfrak{M}_{K}, w & \stackrel{\mathbb{K}}{\models} \Diamond \varphi & \stackrel{\text{def}}{\Leftrightarrow} & (\exists v \equiv w) \ \mathfrak{M}_{K}, v & \stackrel{\mathbb{K}}{\models} \varphi \end{split}$$

Trees 0000	Ockhamist 000	Peircean 0000	Leibnizian 00000000	Thomason 000	Łukasiewitz? 0000

<u>THEOREM</u>: Every \models -valid formula is \models -valid.

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	000●0000	000	0000

<u>THEOREM</u>: Every \models -valid formula is \models -valid.

<u>**PROPOSITION</u>**: There are $\stackrel{\circ}{\models}$ -valid formulas that are not $\stackrel{\ltimes}{\models}$ -valid.</u>

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	000●0000	000	0000

<u>THEOREM</u>: Every \models -valid formula is \models -valid.

<u>**PROPOSITION</u>**: There are $\stackrel{\circ}{\models}$ -valid formulas that are not $\stackrel{\ltimes}{\models}$ -valid.</u>

This was expected: \Diamond in $\models^{\underline{\kappa}}$ quantifies over worlds, but $\models^{\underline{\rho}}$ quantify over sets of worlds.

 \diamond is interpreted with a 1st order quantification in \models \diamond is interpreted with a 2nd order quantification in \models

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	000●0000	000	0000

<u>THEOREM</u>: Every \models -valid formula is \models -valid.

<u>**PROPOSITION</u>**: There are $\stackrel{\text{O}}{\models}$ -valid formulas that are not $\stackrel{\text{K}}{\models}$ -valid.</u>

This was expected: \Diamond in $\models^{\underline{\kappa}}$ quantifies over worlds, but $\models^{\underline{\rho}}$ quantify over sets of worlds.

 \diamond is interpreted with a 1st order quantification in \models \diamond is interpreted with a 2nd order quantification in \models

It is not impossible, however, to replace a 2nd order quantification with a 1st order one, but to do so, you have to be able to name all the sets with an individuum uniquely.

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	000●0000	000	0000

<u>THEOREM</u>: Every \models -valid formula is \models -valid.

<u>**PROPOSITION</u>**: There are \models -valid formulas that are not \models -valid.</u>

This was expected: \Diamond in $\models^{\underline{\kappa}}$ quantifies over worlds, but $\models^{\underline{\rho}}$ quantify over sets of worlds.

 \diamond is interpreted with a 1st order quantification in \models \diamond is interpreted with a 2nd order quantification in \models

It is not impossible, however, to replace a 2nd order quantification with a 1st order one, but to do so, you have to be able to name all the sets with an individuum uniquely.

Show that every history in a finite tree is uniquely identifiable with a world.

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	00000000	000	0000

COUNTEREXAMPLE: INFINITE BINARY TREES

 $W \stackrel{\text{def}}{=} \{w : w \text{ is a route to a point}\} \\= \{\langle w_1, \dots, w_n \rangle : n \in \omega, (\forall i \le n) w_i \in \{U, R\}\}$

 $w \sqsubseteq v \stackrel{\text{def}}{\Leftrightarrow} v$ is a continuation of w, i.e., iff $(\forall i \le n)w_i = v_i$ where n is the length of w.

Note that histories correspond to infinite routes!

Also note we can not name the histories by worlds (as was the case in the finite cases)! There are (infinitely) many infinite continutations of finite routes.

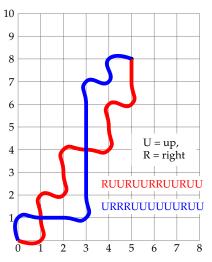
A set of histories $B \subseteq H(\mathfrak{F})$ is called a **bundle** iff

$$\bigcup B = W,$$

that is, for every $w \in W$ there is a history $h \in B$ s.t. $w \in h$.

We can find a proper bundle, which is in fact can be named by worlds:

$$\{h \in \mathcal{H}(\mathfrak{F}) : \exists w (\forall v > w)v = \langle w, U, \dots, U \rangle\}$$



Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	00000000	000	0000

BUNDLED TREES

<u>DEFINITION</u>: A bundled tree is a triplet $\mathfrak{F}_B = (W, <, B)$ where (W, <) is a tree and $B \subseteq H(W, <)$ is a bundle. A bundled model is a quadruple (\mathfrak{F}_B, V) where \mathfrak{F}_B is a bundled frame and $V : At \to \wp W$ is a valuation.

$$\begin{split} \mathfrak{M},h,w & \stackrel{\mathbb{B}}{\models} p & \stackrel{\text{def}}{\Leftrightarrow} & w \in V(p) \\ \mathfrak{M},h,w & \stackrel{\mathbb{B}}{\models} \neg \varphi & \stackrel{\text{def}}{\Leftrightarrow} & \text{it is not true that } \mathfrak{M},h,w & \stackrel{\mathbb{B}}{\models} \varphi \\ \mathfrak{M},h,w & \stackrel{\mathbb{B}}{\models} \varphi \wedge \psi & \stackrel{\text{def}}{\Leftrightarrow} & \mathfrak{M},h,w & \stackrel{\mathbb{B}}{\models} \varphi \text{ and } \mathfrak{M},h,w & \stackrel{\mathbb{B}}{\models} \psi \\ \mathfrak{M},h,w & \stackrel{\mathbb{B}}{\models} \mathbf{P}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & \exists v (v < w \wedge \mathfrak{M},h,v & \stackrel{\mathbb{B}}{\models} \varphi) \\ \mathfrak{M},h,w & \stackrel{\mathbb{B}}{\models} \mathbf{F}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & (\exists v \in h) (w < v \wedge \mathfrak{M},h,v & \stackrel{\mathbb{B}}{\models} \varphi) \\ \mathfrak{M},h,w & \stackrel{\mathbb{B}}{\models} \Diamond \varphi & \stackrel{\text{def}}{\Leftrightarrow} & (\exists h' \overset{w}{\sim} h) (h \in \mathcal{B} \wedge \mathfrak{M},h',w & \stackrel{\mathbb{B}}{\models} \varphi) \end{split}$$

<u>**PROPOSITION:**</u> \models -validity corresponds to \models -validity.

<u>QUOTE</u>: "Belnap et al. have argued that it is implausible to assume that there could be some property which could »justify treating some maximal chains as real possibilities and others as not« (Belnap et al. 2001, p. 205)"

Hirokazu Nishimura (1979) - Stanford Enc.

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	00000000	000	0000

DEFENSE OF BUNDLED TREES

Suppose we have discrete models (we are thinking in days instead of moments). Are these two sentences contradictory?

- "Inevitably, if today there is life on earth, then either this is the last day (of life on earth), or the last day will come."
- "At any possible day on which there is life on earth, it is possible that there will be life on earth the following day."

Hirokazu Nishimura (1979)- Stanford Enc.

Let *p* be "there is life on earth". Let *h* be some history (it does not matter actually)

- $\mathfrak{M}, h, w \models \Box(p \to \underline{\mathbf{F}}\mathbf{G}\neg p)$
- For all $v \in W$: $\mathfrak{M}, h, v \models p \rightarrow \Diamond \mathbf{F}p$

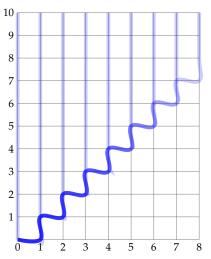
Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

DEFENSE OF BUNDLED TREES

finite zigzags: $\langle R, U, R, U, \ldots, R, U \rangle$ infinite columns: $\langle U, U, U, U, \dots, \rangle$ W: finite routes R: continuation $B = \left\{ w \oplus v : \begin{array}{c} w \text{ fin. route,} \\ v \text{ inf. column} \end{array} \right\}$ V(p): the finite zigzags life on Earth ++++ zigzagging $\Box(p \rightarrow \mathbf{F}\mathbf{G}\neg p) \iff$ in every history, sooner or later life (zigzags) will permanently end $p \rightarrow \langle \mathbf{F}p \leftrightarrow \mathbf{F} \rangle$ one more day of life (zigzag) is always possible The Ockhamist will find the infinite zigzag, which refutes

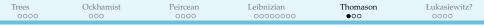
 $(p \to \underline{\mathbf{F}}\mathbf{G} \neg p)$

But the Bundle-treehugger won't.

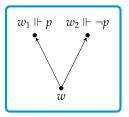


Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

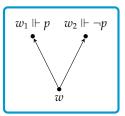
Thomason



Consider the tree on the right. Let p represent the sentence "There is a sea battle". Suppose that w is today, and w_1 and w_2 are the two possible tomorrows.

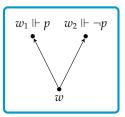


Consider the tree on the right. Let p represent the sentence "There is a sea battle". Suppose that w is today, and w_1 and w_2 are the two possible tomorrows.



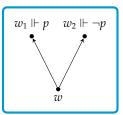
• **F**p is true iff V(p) bars the moment of utterance. (standard Peircean)

Consider the tree on the right. Let p represent the sentence "There is a sea battle". Suppose that w is today, and w_1 and w_2 are the two possible tomorrows.



- **F**p is true iff V(p) bars the moment of utterance. (standard Peircean)
- **F***p* is false iff $V(\neg p)$ bars the moment of utterance.

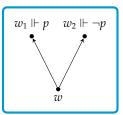
Consider the tree on the right. Let p represent the sentence "There is a sea battle". Suppose that w is today, and w_1 and w_2 are the two possible tomorrows.



- **F**p is true iff V(p) bars the moment of utterance. (standard Peircean)
- **F***p* is false iff $V(\neg p)$ bars the moment of utterance.

(Not Peircean at all!!! Falsehood of Fp correspond to the Peircean truth of $F\neg p$, not to $\neg Fp$!! So from a Peircean point of view, falsehood is some kind of 'inner negation'.)

Consider the tree on the right. Let p represent the sentence "There is a sea battle". Suppose that w is today, and w_1 and w_2 are the two possible tomorrows.

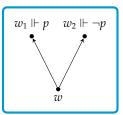


- **F***p* is true iff *V*(*p*) bars the moment of utterance. (standard Peircean)
- **F***p* is false iff $V(\neg p)$ bars the moment of utterance.

(Not Peircean at all!!! Falsehood of Fp correspond to the Peircean truth of $F\neg p$, not to $\neg Fp$!! So from a Peircean point of view, falsehood is some kind of 'inner negation'.)

Partial semantics: What if neither of them bar the moment of utterance?

Consider the tree on the right. Let p represent the sentence "There is a sea battle". Suppose that w is today, and w_1 and w_2 are the two possible tomorrows.



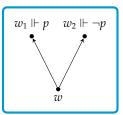
- **F***p* is true iff *V*(*p*) bars the moment of utterance. (standard Peircean)
- **F***p* is false iff $V(\neg p)$ bars the moment of utterance.

(Not Peircean at all!!! Falsehood of Fp correspond to the Peircean truth of $F\neg p$, not to $\neg Fp$!! So from a Peircean point of view, falsehood is some kind of 'inner negation'.)

Partial semantics: What if neither of them bar the moment of utterance?

Then **F***p* is **undefined** in the moment of utterance.

Consider the tree on the right. Let p represent the sentence "There is a sea battle". Suppose that w is today, and w_1 and w_2 are the two possible tomorrows.



- **F**p is true iff V(p) bars the moment of utterance. (standard Peircean)
- **F***p* is false iff $V(\neg p)$ bars the moment of utterance.

(Not Peircean at all!!! Falsehood of **F***p* correspond to the Peircean truth of $\mathbf{F}\neg p$, not to $\neg \mathbf{F}p$!! So from a Peircean point of view, falsehood is some kind of 'inner negation'.)

Partial semantics: What if neither of them bar the moment of utterance?

Then **F***p* is **undefined** in the moment of utterance. Because these statements' truth values are not settled yet. Tomorrow they will be settled, but now they are not.

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

SUPERVALUATION

We will consider the word undefined as a 3rd truth value.

Ruzsa was a hardcore classical logician as well: He did not acknowledged any formal system as a logic if it did not fulfilled the Law of (Non-)Contradiction and the Law of Excluded Middle. But how did he give an account about these 3valued thing as a logic? These classical laws are fulfilled – on those formulas where the interpretation is defined.

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

SUPERVALUATION

We will consider the word undefined as a 3rd truth value.

<u>NOTATIONAL PROBLEM</u>: we can not represent 3 value with our \models sign, so we switch to the intension-notation:

$$\mathfrak{M},w\models\varphi\leftrightsquigarrow [\![\varphi]\!]_w^{\mathfrak{M}}=\mathsf{true}$$

<u>CHEAT</u>: Instead of starting everything from the beginning, we can define truth via Ockhamist truth!

... Thomasonian truth supervenes on Ockhamist truth...

$$\llbracket \varphi \rrbracket_w^{\mathfrak{M}} \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} \mathrm{T} & \mathrm{if} \; (\forall h \ni w) \mathfrak{M}, h, w \models^{\mathrm{o}} \varphi \\ \mathrm{F} & \mathrm{if} \; (\forall h \ni w) \mathfrak{M}, h, w \models^{\mathrm{o}} \neg \varphi \\ \mathrm{U} & \mathrm{otherwise} \end{array} \right.$$

Ruzsa was a hardcore classical logician as well: He did not acknowledged any formal system as a logic if it did not fulfilled the Law of (Non-)Contradiction and the Law of Excluded Middle. But how did he give an account about these 3valued thing as a logic? These classical laws are fulfilled – on those formulas where the interpretation is defined.

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

Compositionality

Our cheat had a cost: the compositionality.

<u>DEFINITION</u>: A meaning function $[]]_w$ is compositional iff the meaning $[f(\varphi, \psi, \dots)]_w$ of a complex expression $f(\varphi, \psi, \dots)$ is determined by the meanings $[[\varphi]]_w, [[\psi]]_w, \dots$ of the constituents φ, ψ, \dots That is a very general definition which is common

in the Andréka–Németi–Madarász–Sain school

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

COMPOSITIONALITY

Our cheat had a cost: the compositionality.

 $\begin{array}{l} \underline{\text{DEFINITION}}: \text{ A meaning function } [[]_w \text{ is compositional iff the meaning } \\ [[f(\varphi, \psi, \dots)]_w \text{ of a complex expression } f(\varphi, \psi, \dots) \text{ is determined by the } \\ \text{meanings } [[\varphi]]_w, [[\psi]]_w, \dots \text{ of the constituents } \varphi, \psi, \dots \\ \text{ That is a very general definition which is common } \\ \text{ in the Andréka–Németi–Madarász–Sain school } \end{array}$

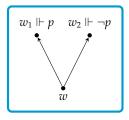
Remember to the sea battle model:

$$\llbracket \mathbf{F}p \rrbracket_w = \mathbf{U}, \qquad \llbracket \mathbf{F} \neg p \rrbracket_w = \mathbf{U}, \qquad \llbracket \mathbf{F}p \lor \mathbf{F} \neg p \rrbracket_w = \mathbf{T}$$

But

$$\llbracket \mathbf{F}p \rrbracket_w = \mathbf{U}, \qquad \llbracket \mathbf{F}p \rrbracket_w = \mathbf{U}, \qquad \llbracket \mathbf{F}p \lor \mathbf{F}p \rrbracket_w = \mathbf{U}$$

In non-compositional logics you have to "look into" the formula



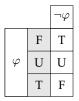
Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

Łukasiewitz?

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	00000000	000	●000

MODELLING THE UNDEFINED – KLEENE'S LOGIC(S) Atoms and Negation

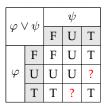
Every atom is either true or false, given by the model's valuation *V*.



Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

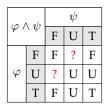
MODELLING THE UNDEFINED – KLEENE'S LOGIC(S) Conjunction and Disjunction

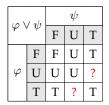
			ψ	
φ /	$\varphi \wedge \psi$		U	Т
	F	F	?	F
φ	U	?	U	U
	Т	F	U	Т



Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

MODELLING THE UNDEFINED – KLEENE'S LOGIC(S) Conjunction and Disjunction





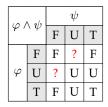
WEAK CONJECTIVES

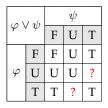
$\varphi \wedge \psi$		ψ				
		F	U	Т		
	F	F	U	F		
φ	U	U	U	U		
	Т	F	U	Т		

	$\varphi \lor \psi$			ψ	
			F	U	Т
		F	F	U	Т
	φ	U	U	U	U
		Т	Т	U	Т

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

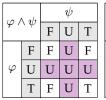
MODELLING THE UNDEFINED – KLEENE'S LOGIC(S) Conjunction and Disjunction





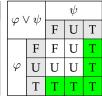
WEAK CONJECTIVES

STRONG CONJECTIVES



$\varphi \lor \psi$		ψ			
		F	U	Т	
	F	F	U	Т	
φ	U	U	U	U	
	Т	Т	U	Т	

$\varphi \wedge \psi$		ψ		
		F	U	Т
	F	F	F	F
φ	U	F	U	U
	Т	F	U	Т



Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

MODELLING THE UNDEFINED – KLEENE'S LOGIC(S)

VARIATIONS FOR IMPLICATION

weak		ψ			
$\neg \varphi \lor \psi$		F	U	Т	
	F	Т	U	Т	
φ	U	U	U	U	
	Т	F	U	Т	

strong $\neg \varphi \lor \psi$		ψ			
		F	U	Т	
	F	Т	Т	Т	
φ	U	U	U	Т	
	Т	F	U	Т	

Łukasiewicz $arphi o \psi$		ψ			
		F	U	Т	
	F	Т	Т	Т	
φ	U	U	Т	Т	
	Т	F	U	Т	

Trees	Ockhamist	Peircean	Leibnizian	Thomason	Łukasiewitz?
0000	000	0000	0000000	000	0000

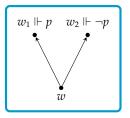
About future

$$\llbracket \mathbf{F}\varphi \rrbracket_{w}^{\mathfrak{M}} \stackrel{\text{def}}{=} \begin{cases} T & \text{if } (\forall h \ni w)(\exists v > w) \llbracket \varphi \rrbracket_{w}^{\mathfrak{M}} = T \\ \mathbf{F} & \text{if } (\forall h \ni w)(\exists v > w) \llbracket \varphi \rrbracket_{w}^{\mathfrak{M}} = \mathbf{F} \\ \mathbf{U} & \text{otherwise} \end{cases}$$

Trees 0000	Ockhamist 000	Peircean 0000	Leibnizian 00000000	Thomason 000	Łukasiewitz? 000●

About future

$$\llbracket \mathbf{F}\varphi \rrbracket_{w}^{\mathfrak{M}} \stackrel{\text{def}}{=} \begin{cases} \mathbf{T} & \text{if } (\forall h \ni w)(\exists v > w) \llbracket \varphi \rrbracket_{w}^{\mathfrak{M}} = \mathbf{T} \\ \mathbf{F} & \text{if } (\forall h \ni w)(\exists v > w) \llbracket \varphi \rrbracket_{w}^{\mathfrak{M}} = \mathbf{F} \\ \mathbf{U} & \text{otherwise} \end{cases}$$



Now go back to the sea battle

$$\llbracket \mathbf{F}p \rrbracket_w = \mathbf{U}, \qquad \llbracket \mathbf{F}\neg p \rrbracket_w = \mathbf{U}, \qquad \llbracket \mathbf{F}p \lor \mathbf{F}\neg p \rrbracket_w = \mathbf{U}$$