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IRR-RULE

LEMMA: The IRR rule is valid:

(pAH=p) = ¢

- where p does not occur in ¢

(IRR)

PROOF: Suppose that (p A H-p) — ¢ is valid on a Kamp-frame £, i.e., true in all
worlds w.r.t. any Kamp-valuation. Now take an arbitrary but fixed world w and

Kamp-valuation V. We will prove that &, V,w £ ¢

R, V[P — {U W= U}], w 'é (p N Hﬁp) — @ assumption
R,V[PH{UZZUEU}]JU '£ p AH-p By Vip — {v:w = v}]
ﬁ, V[ﬁ —> {U W= U}], w 'é [%2) modus ponens

ﬁ, V, w '£ %2} p did not occur in ¢ ]
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COMPLETENESS PLAN

We construct an irreflexive submodel Emg{R of the canonical Kamp model 9tg. We will prove that we can

use that model to prove a completeness proof. Wg{R will be those maximally O-consistent worlds that are
at the same time IRR theories, which we will define later, but in the meantime, the following properties will

show why do we focus on that property:
irr. If T is a maximally O-consistent IRR theory, then it is not true that ' <g T'.
clirr. If T is a maximally O-consistent IRR theory, then there is no maximally O-consistent IRR theory I’
st T <o IMandI =g I.

(IRRExt) If I' is O-consistent and an infinite number of atomic sentences does not occur in I', then it can be

extended into an O-consistent IRR theory I'T".

(IRRLin) If T is O-consistent and IRR, then it can be extended into maximally O-consistent IRR theory I'T".

(L7) HTisIRR, thensois L™ (T') forany L € {0, F, H}.
(FE) IfTisIRR, thensoisT' U {¢} forany ¢ € Lg.
(Ex) IfT is an max. O-con. IRR theory s.t. O € T, then there is a I st. TRoT and ¢ € T, where
Ro € {<0,=0}-
(Truth) Truth is membership in the IRR submodel of the canonical model.

(CMT ™) The IRR submodel of the canonical model is almost a Kamp model - canonicity proofs for all

property except the maximality of histories.
We transform Dﬁg{R into an MB(ng) in which the histories are maximal.

We prove that smg‘R is a zigzag image of MB(DJTI(I){R).
We can conclude a weak completeness theorem for Kamp semantics

We construct a bundled tree model BT(MB(SU{g{R)) which satisfy the same formulas as MB(DJTg{R).
We can conclude a weak completeness theorem for bundled tree semantics

Strong completeness can be gained by enriching the language with countable infinite new propositional
variable and to reconstruct the procedure above with that enriched language.
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IRR-THEORIES: IDEAS
Let us consider a loop as a sin.

T can prove its innocence easily iff
T' o p AH-p for some p € At.
I' is in the company of easily provable innocents iff

T'Fo Mi(p1 AMoa(2 A AMy_1(n—1 AMugn) ...))
There is a p € At not occurring in 1, ..., ¢n, s.t.
I'Fo Ml(ﬁol A MZ(SOZ ARERRA Mnfl(ﬂonfl A Mn(@n ApA H—'p)) S ))

where M; € {O,F, P} foralli < n.

Consider 1, . . ., ¢n as tags of accessible worlds. The nested occurrences of “M;(p;A\”
represents a search of the neighbour worlds where temporarily we tag every world
with a formula that occurs there. The i-th step is made by M;, and the tag of that world

Nelelelelcle

We willl focus on those maximally O-consistent theories that can prove their innocence
easily and are in the company of easily provable innocents. To do so, however, we will
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IRR-THEORIES

Maximalizing Histories
Intuitively, I' is an IRR-theory iff I o p A H—p for some p € At, and

For all p € At not occurring in 1,

sy Py

Precisely,

PHoLi(p1r = La(pr = .. = Ly—1(pu—1 = Lu(pn = (=(p AH-p)))) ...))
ThoLi(er = La(wa = .. = Ly—1(pn—1 = Lu(pn — 1))...))
where L; € {O,G,H} foralli < n.

[2;0)(#) &
[(L,L); (¢, B)](#)

and [T #)(¢)

7,
L(¢ — [L; &)(#)) where L € {0, G, H}
4f 1T, 3(#/¢). Then I is IRR iff

For all p € At not occurring in 7,
I'Fo [L; &gl (=(p A H=p))

ko [Li@l(L)
where L is an n-tuple over {00, G, H}.
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(IRREXT)

Maximalizing Histories

A consistent theory in which an infinite number of atomic propositions do not occur,

can be extended to a consistent IRR theory.

PROOE:

So let I" be a consistent theory described above, and let p an atom not occurring in I'.

Let 3 & py {p A H—p}. This is consistent, for if

ru{pAnH-p} F L
r ~(p AH=p)

~(p AHp)

ATfinite = —=(p A H-p)

(p AH=p) = = A Thinite

= A\ Linite

€1

€1

Alinjte 2 T

TTTTTTT

Fﬁr\ite
r

3o :=TU{pAH-p}

ind.ass.
Ded.thm.
def.of -
def.of
contraposition
IRR-rule
ded.thm
QED

]

=[5 @)L,
i1 = % U § [ g]-(g A Hog)

where g is new
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(IRRLIN)

Every consistent IRR set is extendable to a maximally consistent IRR set.

i /o L3 @] (=(p A Hop)) for somep Z & 1
1 : =, was IRR

I 1 -
R {ﬁ[f; Z=(p A Hp) }]

Ag = Uiew po

(YL( &L o 2 >(Bis = 4,0 (-9))

ut .= Uicw Ex‘”

Ajpg = AU {p}
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(L)
ForL € {OJ,G,H},
isIRR = L~ () is IRR

PROOF: Let ¢ C 1/_; denote that ¢ is a subformula of an element of 1/_;:

(WEZ @) L () ko [LiF)(=(p AH-p)) assumption
(VpZ @) L7(I) ko T—=[Lidl(=(pArH-p)
(Vp &) I' Fo L(T = [L; @l(=(p AH=p))) 1 thing
(VpZ &) [ Fo [L,L); (T, @] (=(p AH=p)) defof templates
I Fo [(L,L);(T,@I(L) I is IRR
' ko L(T — [L;Z](L)) def.of templates
L () Fo T — [Li@(L) L thing
L™ (1) ko [L;@)(L) PC
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(FE)

ForL € {0,G,H},
[isIRR = I'U{y} is IRR

Maximalizing Histories

PROOF: Let o C 1/7 denote that ¢ is a subformula of an element of J:

(Vp Z 53) ru {(p} Fo [E, (ﬁ}(ﬁ(p A Hﬂp)) assumption
(VP EZ3) Fu{e}l Fo [Li,Lz, ... La); (@1, 92, - -, en)](=(p A H-p))
focusing on the inside of @ and L.
(VP Z @) Fu{e} Fo Li(er = [(Lz, .., La); (2, - - -, n)(=(p A H-p)))
def.of templates
(Vp Z @) Ly (Tu{e}) Fo e1 = [(La,- . La); (2, - - -, n)](=(p A H-p))

L;-thing

(MPEZ@) Ly MUL ({e}) Fo ¢1 = (Lo, ..., Lu); (w2, .-, )] (=(p A H-p))

L, distributes over U.
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(FE) Now if ¢ is of form L1, then
(PZ ) LT ULT{Lib]) Fo @1 = (Lo Laki (@, o)l (<(p A Hop))
1‘17 distributes over U.
BEZH L OUE Fo e (Lo L)oo @ (20 AHD)  aciort;
(P L) L) Fo (0 Ae) = {La,. o Labi (o2 s oal(-(p A Hop)
ded.thm
(P ZP) P ko Ll A ) = (L2, Labi (020 s o) l(=(p A Hop)
L-thing
(VP2 &) I' Fo [(L1, Lo, ..o, La)s (¥ A1, 02, -, on)] (= (p A HAp))
def.of templates
I Fo (L1, Lo, Lals (W Ars o, on)](L) I'is IRR
I' Fo Li((¥ Aw1) = [(La, .- Ln)s (02, - -5 om) ] (L))
def.of templates
Ll_ (F) |_O (w A 901) — [<L27 s 7LVI)§ (9027 B SDVI)](L) L;-thing
Ll_ (F) U {w} |_O ©1 — [<L27 s ’L">§ (9027 s W”)](L) ded.thm
Ly (M) ULy ({L1¥}) Fo w1 — [(Lo, .-+, La); (@2, - - om)] (L) ded.thm
Ly M ULi({e}) Fo w1 — Lz, La)i (w2, ..., on)](L) def.of I
Ll_ (F U {4/’}) I70 Y1 — [<L27 e :LTI>§ <<P2’ ey <P1’l>](J-) L distributes over U
Fu{e} Fo Li(er — (L2,  Lu)s{p2, - on)](L)) L -thing
ru{y} Fo [(L1,L2,...,Lu); (1,02, )] (L) def.of template
ru {w} '70 [L>7 <¢>](J-) vector-notation
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(FE)
(WEZ @) L (MUL ({#})
(Vp iL )

(Vp £ @) L ()
(VpZ &)

(Vp L P) r

Ly (Mug

T

Ly (T)

LM u{e}

Ly (M) ULy ({«})
LT u{e})

U {¢}

ru{y}

ru{y}

IRR theories
0000000e

Fo
Fo

Fo

I' Fo

Fo

Fo
Fo

Fo
Fo
Fo
Fo
Fo
Fo
Fo

Irr. can. submodel
0000

Now if ¢ is NOT of form L;1, then

o1 = [(Lz, .., Lu); (@2, - - -, )] (=(p A H-p))
Ll distributes over U.

1 = (L2, -, La)s {92, -+, on)] (—(p A Hp))
dcf.ufl,i

w1 = [(La, .., Lu); (w2, - - -, 0om)] (=(p A H=p))
Li(pr = [(L2, -, Lu); (w2, - -, ou)](=(p A Hp)))
L;-thing

[(L1, L2, ..., La)s {1, 02, - -, )| (= (p A HAp))
def.of templates
[(L1,La, .. L) {1,902, - o)) (L) I is IRR

Li(er = [(L2, .-, Lu); (@2, - -, on)](L))

def.of templates
o1 = [(La, .. Lu); (w2, oo o)) (L) Ly-thing
w1 = (Lo, ..o, La)s {2, oo o)l (L) ded.thm
o1 = [(Lz, o, Lndi (@2, -+ o)) (L) defof L™
1 — [<L27 s 7Ln>; <5027 ceey SOHH(J-) L, distributes...
Ly (501 - [<L27 s 7L">§ <<P27 ) ‘le)](J-)) L1-thing
(L1, L2, La)s (1,02, - - -5 o) (L) def.of template

L) (B(L)

vector-notation

Maximalizing Histories
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Irreflexive canonical submodel
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CANONICAL KAMP MODEL

Mo & (Wo, <o0,=o0, Vo)
where
e Wo dof {T" : T'is a maximally O-consistent IRR-theory},

o ' <o I"iff G™(T') C I'" Remember that these are equivalent:

G I cr
I O FH(I)
r > H (I')
PH(I) C IV
[ — e o @r cr
o I'=o Iiff O (I") C IV, Similarly: P> o)

e TeVo(p) & perl.
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(EX)

Let M denote the dual pair of L.

Mp el = (3" € Wo)[I" 2 L™ (I') and ¢ € I'']

Since I'is IRR, so are L™ (I") and L™ (T") U {¢}, by (L") and (FE). The latter is
consistent by the standard argumentation:

L (M) u{e} Fo L indirect assumption
L7 () Fo —¢ Deduction theorem
IX Fo - def.of L™ (") ko

Fo AX— e def.of -
Fo LAX — L-¢ Lemmon
Fo ALX — L-¢ A-axiom

ALX Fo L-¢ def.of g
I' Fo L-e x €L T(IN)eLlxel
I' Fo —Fep Duality
T'U{Fp} Fo L Deduction theorem
' Fo L by the assumption Fp € T'. QED

So we can extend L™ (I") U {¢} by (IRRLin) into a maximally O-consistent
IRR theory, and we are ready.
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SUMMARY

e The Truth Lemma goes through by our new existence lemma.

® Vo is a Kamp-valuation by the axiom of the unpreventability of past.

(UPP) ¢ — Oy where F does not occur in ¢

® < isirreflexive by construction (all our canonical worlds are IRR
theories).

® <o is transitive and non-branching by the canonicity of 4 and .3.
® =g is reflexive, transitive and symmetric by the canonicity of T, 4 and B.

e I'=p A =T £o A comes from (UPP) and from the construction: There
isap AH-p € A, by UPP, O(p A H-p) € A, by def of =o, and the
symmetry of it, p A H—p € T'. ButI" <o A would mean that
H™ (A) CT,so —p € I"which causes a contradiction.

e w=vAw <w)— (I <v)w =9 - We prove this on the next slide

e (Vw,v)(Fw' < w)(I' < v) w = v As in usual, we can take the generated
submodels to validate this.

o (Vw,v)(w=vAw#0)(Fw >w)(Vo' >v)w £ thatis not true, we
will have to suffer with this later
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F/

Z/

O = pif FL o
© — GOPOy
(p ANH-p ADg) — GOH((p AH=-p) — ¢)

r

G (rcr
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